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Introduction to spectroscopy 



The need for high-resolution 
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(Courtesy G. Branduardi-Raymont) 



The benefits of high-resolution 

•  Wealth of emission
 lines from different
 ions, chemical
 elements over a
 broad wavelength
 range 

(figure: Capella, Audard et al. 2001) 
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Line ratios 

•  Line ratios lines
 from same ion
 may contain
 wealth physical
 info (see later) 

•  Example:
 famous O VII
 triplet 

Flare star EQ Peg, courtesy J. Schmitt 
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Other sources, same lines: AGN 
example: NGC 1068, Seyfert 2, Kinkhabwala et al.2002 
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Absorption spectra: same lines, other
 physics 

Example: Sako et al. 2001 
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Two types of spectra 

Emission Absorption 
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What can you get from a
 spectrum? 

•  Electron temperature 
•  Gas density 
•  Chemical abundances 
•  Interstellar dust 
•  Ion temperature 
•  Turbulent velocity 
•  Physical state plasma 
•  Age plasma 
•  Volume plasma 
•  Presence non-thermal electrons 

9 



10 

A brief introduction to atomic 
structure 



The Bohr model 

•  Got this in your
 quantum class! 

•  En = -Z2R/n2 with R
 the Rydberg energy: 

•  R=  ½ (mec2)α2 ≈13.6
 eV  with α≈1/137 the
 fine structure
 constant 

•  For Z=O(1/α) orbital
 velocities become
 relativistic 11 



Quantum numbers: 
single electron 

•  Four quantum numbers describe electron
 configuration: 

•  n – principal quantum number (Bohr
 model) n=1,2,3,4,… 

•  l – angular momentum orbit; l=0,1,2,…n-1;  
•  s – spin electron; s=±½ 
•  j – total angular momentum; |l-s|≤j≤|l+s| 
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Some common notation 
l l=0 l=1 l=2 l=3 

Designation s p d f 

•  Atomic orbitals indicated by n, l and j as follows: 

             nls 
•  Examples: 
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n=1   l=0   j=½ 1s½ 

n=2   l=1   j=½ 2p½ 

n=2   l=1   j=3/2 2p3/2 



Multi-electron systems 

•  More than 1 electron: add quantum
 number according to quantum mechanical
 rules. See textbooks, e.g. Herzberg 1944 

•  Notation: use capitals for combined state 
•  Further same notation as for single

 electrons: 
•  L=0,1,2,3, …. designated by S,P,D,F, … 
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Notation for multilevel atom 

•  Prescribe the configuration and the term 
•  Term written as 2S+1LJ 

•  Example: a two electron system with one
 electron in 1s, the other in 2p state, with
 orbital angular momentum L=1, total spin
 S=1/2, and total angular momentum
 J=1/2: 

   1s2p 2P1/2 
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Atomic structure 

•  The Pauli principle
 prohibits two
 electrons to be in
 the same state 
 max # electrons in
 a shell 

Shell Max # electrons 

1s 2 

2s 2 

2p 6 

3s 2 

3p 6 

3d 10 

4s 2 
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Other widely used notation 
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The periodic system: atomic
 structure 
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Energy levels free atoms 
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E~Z2 for K-shell 
Others more complex due to interactions 
Highest E (X-rays!): high Z, inner shells 



Energy levels for ions 

•  Energy levels for
 ions same
 element similarf,
 but not the same 

•  Why? 
•  Interactions

 electrons 
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Line transitions: selection rules 

•  If an atom / ion is in excited state (higher orbit), it
 can decay to a lower state by emission of a
 photon. 

•  Required: initial energy level higher than final
 energy level 

•  However, not all transitions allowed (quantum
-mechanical selection rules) 

•  Some transitions forbidden, but still occur (due to
 rarer, higher order processes) 
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Basic processes 



Overview of processes 
a)  Radiative transitions 
b)  Excitation processes 

1.  Collisional excitation 
2.  Collisional de-excitation 
3.  Radiative excitation 

c)  Auger processes &
 fluorescence 

d)  Bremsstrahlung 
e)  Two photon emission 

f)  Ionisation processes 
1.  Collisional (direct) ionisation 
2.  Excitation- autoionisation 
3.  Photoionisation 
4.  Compton ionisation 

g)  Recombination processes 
1.  Radiative recombination 
2.  Dielectronic recombination 

h)  Charge transfer processes 
1.  Charge transfer ionisation 
2.  Charge transfer recombination 
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Spontaneous emission 

•  An atom in an excited state k can decay to
 a lower state i by emitting a photon. The
 probability per unit time is Aik (s-1). 

•  Depending on the available energy levels
 & selection rules, state k may decay also
 to other levels (branching) 

•  If the transition is not to the ground state,
 more transitions may follow (cascade) 

24 



Collisional excitation 
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Collisional excitation II 

•  Rates (m3/s) can be calculated averaging
 over a Maxwellian; asymptotics: 
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Collisional de-excitation 

•  Inverse process of collisional excitation:
 collision by a free electron can bring
 bound electron into higher level 

•  Sometimes only way to get electron back
 to ground state, when no radiative
 transitions are allowed  density
 depencence of spectral lines 
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Radiative excitation  
(line absorption) 

•  Photon encounter with ion: photon can be
 absorbed  ion in excited state 

•  When ion de-excites afterwards by
 emitting photon of same energy, process
 is called resonance scattering 
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Fluorescence 
•  Create a hole in electron

 distribution by ionisation
 (through photons,
 electrons) 

•  Hole filled by electron
 from higher shell 

•  Result: photon
 compensating energy
 difference 

•  Efficiency: fluorescence
 rate ω depends on
 nuclear charge Z 
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Dictionary of inner-shell transitions  
(once you encounter them;  

IUPAC = International Union of Pure and Applied Chemistry) 
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Auger processes 
(Autoionisation) 

•  Create hole in
 electron
 distribution by
 ionisation (through
 photons,
 electrons) 

•  Fill hole without
 emitting photons:
 one electron falls,
 but other is
 ejected 
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Bremsstrahlung 
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Bremsstrahlung II 

•  Spectrum has exponential cut-off at E=kT 
•  Need to add contributions from all ions in

 the plasma (not just hydrogen!) 
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Two photon emission 
•  Important for H-like or He-like ions 
•  Happens after collisional excitation 1s2s 
•  No radiative way back to 1s (not allowed) 
•  Has to stay there forever (waiting for collisional excitation

 to higher level & subsequent decay) 
•  But rare process may occur: submitting two photons

 simultaneously; sum energies equals 1s-2p energy
 difference; further no constraint 

•   effectively continuum emission process, though
 formally double line emission 
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Collisional ionisation 
•  Free electron kicks out bound

 electron 
•  Kinetic energy free electron

 >ionisation potential 
•  Cross section smaller at high E 
•  Average cross section over

 Maxwellian to get rates 
•  Contributions from all shells;

 usually (but not always)
 mostly the outer shells 
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Excitation-Autoionisation 

•  Two stage process: 
•  Free electron excites

 the ion 
•  Ion decays through

 autoionisation 
•  Important for some

 sequences such as
 Li-like, Na-like ions 

•  Example: Li-like ion 
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Photoionisation 
•  Photo-electric effect: photon

 kicks out electron 
•  Photon energy > ionisation

 potential shell 
•  Cross section >0 @ threshold 
•  @ fixed E, stronger for inner

 shells 
•  Cooper minima 
•  Edges @ higher E for more

 highly ionised ions 
•  K-shell: cross section σ~E-3 

 incoming spectrum just above
 the edge most important 
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Fe I 

Fe XVI 



Compton ionisation 
•  Compton scattering

 photon on free electron
 well known 

•  Process also works on
 bound electrons 

•  @ high E more important
 than photoionisation 

•  Threshold energy: 
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Radiative recombination 

•  Inverse process of photoionisation: free
 electron captured in bound orbit 

•  Cross-section proportional to
 photoionisation cross section 

•  Recombination rate obtained by
 integration over Maxwellian 

•  Asymptotics:  
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Radiative recombination II 
•  Why radiatitive recombination? 
•  Energy conservation  a photon must be emitted

 carrying energy loss captured electron 
•  Ephoton > I  low-E threshold, continuum emission 
•  If electron captured in higher orbit, further decay by line

 radiation possible 
•  kT<<I (recombining plasma): capture into many levels 
•  kT>>I (ionising plasma): capture mainly to ground & low

-lying levels 
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Dielectronic recombination 
•  Inverse process of excitation-autoionisation: 
•  Free electron captured into higher orbit (nl)", while @ same time

 electron from lower level is excited to higher level (nl)'  doubly
 excited state 

•  Usually followed by autoionisation, but one electron (e.g. (nl)' ) may
 decay radiatively 

•  Energy emission line slightly different from "normal" line due to
 presence "spectator" electron (nl)"  

•  Finally spectator electron may also decay  multiple photon
 emission 

•  Due to large number combinations  (nl)"  and (nl)', complex to
 calculate 
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Charge transfer processes 

•  Ions may exchange an electron: 
•  Recombination: H + O8+  H+ + O7+ 

•  Ionisation: inverse process 
•  Due to high abundance H & He, for metals (Z>2)

 mostly interactions with H or He ions important 
•  Usually associated emission lines, but due to

 energy conservation often dominance higher
-order lines (e.g. Lyman δ of O VIII enhanced)  
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Emission spectrum 
•  Continuum emission components 

–  Bremsstrahlung 
–  Radiative Recombination Continuum 
–  Two photon emission 

•  Line emission components 
–  Collisional excitation 
–  Radiative recombination 
–  Dielectronic recombination 
–  Dielectronic satellites 
–  Inner shell ionisation 
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CIE spectrum 
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CIE spectrum 
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CIE spectrum 
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CIE spectrum 
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Ionisation (non)equilibrium 



Ionisation equilibrium 

In equilibrium, ions ionise & recombine
 continuously, but no net change in
 concentrations 

– Simplest case: collisional ionisation
 equilibrium (CIE) 

– More complex: photoionisation equilibrium
 (PIE) 

– Time-dependent plasma: non-equilibrium
 ionisation (NEI) 
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Collisional ionisation equilibrium (CIE) 

•  Only collisional processes (no strong
 radiation field) 
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Solution depends only on temperature T: 
through R(T) and I(T) 



Example of equilibrium
 concentrations 
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Photoionisation equilibrium (PIE) 

•  Extension of CIE model: all ionisation and
 recombination processes taken into account 

•  Solution depends both on T and radiation field 
•  Needs to solve two equations: ionisation balance

 as before and energy balance (heating=cooling,
 where both terms contain several processes) 

•  Most important balancing processes often
 photoionisation and collisional recombination
 (radiative, dielectronic) 

52 



Non-equilibrium ionisation (NEI) 

•  When gas is suddenly heated (e.g. due to
 shock) it takes time to ionise it through
 collisions: the lower n, the longer it takes 
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NEI (II) 

•  Solution depends only on
 T(t) and the following
 parameter: U = ∫ ne dt 

•  Example supernova
 remnants: ne~1 cm-3,
 takes O(1000 yr) to
 ionise 
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log net = 12 

11 

10 
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Comparison CIE/NEI 

•  CIE ion
 concentrations
 oxygen ions 

•  Compare to
 NEI for T=1.5
 keV 

Pictures courtesy Jacco
 Vink 
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Plasma diagnostics 
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Turbulence easy to measure… 
•  Example: 2A0335+096,

 100 ks simulation cluster
 core with Astro-H 

•  Data: no broadening 
•  Model: 300 km/s 
•  Example here for Si XIV,

 much better of course for
 Fe 

•  But: need to pay attention
 to calibration! 



Ion temperatures 

T = 1 keV 
n_e t = 1E15 m^-3 s 
Tion = 1 keV 
Tion = 10 keV 
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Non-equilibrium: measuring ion
 temperatures 

(Vink et al. 2003) 



He-like ions 
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Examples of He-like triplets 
(picture courtesy Frits Paerels) 
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Photoionisation Collisional 
ionisation 

See Porquet 
2011 



Example: O VII 
(Porquet et al. 2001) 
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Density diagnostics triplets 
(Porquet et al. 2011) 
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Dependence on UV radiation field 

•  Forbidden &
 intercombination
 upper level coupled
 also by radiation field 

•  Strong UV field 
 altered ratio; can
 mimic high density! 

•  Example: star ζ Ori,
 T=30000 K 

(fig. from Raassen et al. 2008) 
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Triplet in NEI plasma 
•  Ionising plasma has

 stage with few H-like
 ions few
 recombinations onto He
-like  weaker f+i line 
 lower G=(i+f)/r ratio
 compared to CIE case 

•  Example: 1E0102
 supernova remnant
 (Rasmussen et al. 2001) 
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Dielectronic satellite lines 
•  Example: spectrum in CIE 
•  kT = 2 keV 
•  Fe XXV He-like triplet: z

 (forbidden), x&y
 (intercombination), w
 (resonance) 

•  Most other labelled lines Fe
 XXIV satellite lines 

•  Lines @ E<z-line Fe XXIII 
•  Some sensitive to non-thermal

 electrons 
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Non-thermal electrons 
(Gabriel & Phillips 1979) 

•  j-line only excited by free electrons of E=4.694
 keV (capture free electron & excite one 1s
 electron) 

•  w-line sensitive to all electrons Maxwellian &
 above (suprathermal electrons) 

•   j/w line ratio lower when suprathermal
 electrons are present 
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Detecting non-thermal electrons 

•  Particle
 acceleration in
 many sources
 (shocks, flares,
 etc) 

•  How to detect
 non-thermal tails? 
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Astro-H HXI and SXS 
Fit with thermal plasma only 
already acceptable 

Satellite lines provide the 
answer! 



Abundances 

•  Absorption studies: line properties do not
 depend strongly on Z  most abundant metals
 (O) most prominent 

•  Emission studies: emissivity strong function of Z
  bias towards high-Z (Fe) lines prominent 
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Which elements will we see? 
(Athena) K-shell 
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Absorption spectra 



Continuum versus line
 absorption 

Example: O VIII 
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Continuum absorption 
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Line absorption 
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Sample high-resolution absorption spectra 
(Mrk 509, Seyfert galaxy, 600 ks RGS data; Detmers et al. 2011) 
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Resonance scattering 
•  Alternative to measure

 turbulence 
•  Fe XVII 15.02 to

 17.05/17.10 ratio
 sensitive to res. scat. (τ
 depends on turbulence) 

•  Currently only RGS can
 do it (see also Werner et
 al. 2009) 

•  SXS can map it 

Xu et al. 2002, NGC 4636 



Example: Interstellar medium
 opacity 
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Contribution of the elements to
 the ISM opacity 
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Dust depletion 
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Spectral signatures of dust 

•  Atomic structure
 changes when atom
 bound in molecule 

•  Example: H2O 
•  Study of fine structure

 near edges 
 chemical structure 

•  Uncertainties/lacking
 lab data 
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Galactic foreground emission 
•  Emission from more

 components: 
–  Local Hot Bubble (kT=0.1

 keV) 
–  Distant local components

 (kT=0.2 keV) 
–  Extragalactic power law

 (unresolved point sources) 
–  Solar wind charge

 exchange emission: time
 variable 
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ISM is not homogeneous 

Many components: 
•  Hot ionised 106 K 
•  Warm ionised 8000 K 
•  Warm atomic

 6000-10000 K 
•  Cold atomic 20-50 K 
•  Molecular 10-20 K 
•  dust  



Absorption measure distribution 
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Spectroscopic consistency versus
 formal detection significance 

•  Think you see a line:  
•  Check if other

 instrument sees
 same line (example:
 Buote et al. 2009,
 Sculptor wall) 

•  Are there other lines
 from the same ion?
 Example: Mrk 509   
 O VIII lines  
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